Comparison of Radiation-Conduction Transfer Involving Complex Solid Shapes Determined by Topological Optimization and a Heuristic Technique

Author:

Sevart Chadwick D.1,Bergman Theodore L.1

Affiliation:

1. Department of Mechanical Engineering, University of Kansas , Lawrence, KS 66045

Abstract

Abstract A solid growth method (SGM) and a dual solid method (DSM), both recently developed, are each used to predict solid shapes that provide minimal total (conduction + radiation) resistance to heat transfer in a system involving conduction in a solid whose shape is to be determined, conduction in an adjoining gas, and radiation transfer between opaque, diffuse, and gray surfaces. The performance of each method is illustrated by examining solid configurations and temperature distributions that evolve as the mass of solid is gradually increased (SGM) or reconfigured (DSM). With use of either the SGM or the DSM, the solid evolves in a manner that enhances radiation heat transfer, and it is shown that neglecting radiation in the determination of solid configurations that optimize heat transfer performance is, in general, not justified. Despite the formalism of the DSM, which is based on topological optimization, the thermal performance of the DSM only marginally surpasses that of the SGM in terms of calculated total thermal resistance values, and only for cases involving a high solid thermal conductivity. For low solid thermal conductivity cases, the SGM outperforms the DSM with the difference in performance attributed to the inability of DSM to capture the fine solid structure of the SGM predictions.

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3