Type Curves Analysis for Asymmetrically Fractured Wells

Author:

Wang Lei1,Wang Xiaodong1

Affiliation:

1. School of Energy Resources, China University of Geosciences, Beijing 100083, China

Abstract

In this paper, a new constant rate solution for asymmetrically fractured wells was proposed to analyze the effect of fracture asymmetry on type curves. Calculative results showed that for a small wellbore storage coefficient or for the low fracture conductivity, the effect of fracture asymmetry on early flow was very strong. The existence of the fracture asymmetry would cause bigger pressure depletion and make the starting time of linear flow occur earlier. Then, new type curves were established for different fracture asymmetry factor and different fracture conductivity. It was shown that a bigger fracture asymmetry factor and low fracture conductivity would prolong the time of wellbore storage effects. Therefore, to reduce wellbore storage effects, it was essential to keep higher fracture conductivity and fracture symmetry during the hydraulic fracturing design. Finally, a case example is performed to demonstrate the methodology of new type curves analysis and its validation for calculating important formation parameters.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference30 articles.

1. The Effect of Vertical Fractures on Well Productivity,1960

2. Effect of Vertical Fracture on Reservoir Behavior-Compressible Fluid Case,1961

3. Well Test Analysis for Vertically Fractured Wells;J. Pet. Technol.,1972

4. Ramey, H. J., Jr., and Gringarten, A. C., 1975, “Effect of High Volume Vertical Fractures on Geothermal Steam Well Behavior,” Proceedings of Second United Nations Symposium on the Use and Development of Geothermal Energy, San Francisco, CA, May 20–29.

5. Applied Pressure Analysis for Fractured Wells;J. Pet. Technol.,1975

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3