Applied Pressure Analysis for Fractured Wells

Author:

Gringarten A.C.1,Ramey H.J.2,Raghavan R.2

Affiliation:

1. U. of California

2. Stanford U.

Abstract

A number of recent studies have resulted in an increased understanding of fractured-well behavior. Two of these studies provide new information on applying log-log type-curve matching procedures to pressure data obtained from fractured wells. This paper compares the applicability of type-curve and conventional semilog methods. Introduction The pressure behavior of fractured wells is of considerable interest because of the large number of wells that intersect fractures. As a result of a number of studies, an increased understanding of fractured-well behavior has been obtained. Although the shape of actual fractures is undoubtedly complicated, most studies assume that real fractures may be ideally visualized as planes intersecting the wellbore. It is generally believed that hydraulic fracturing normally results in one vertical fracture, the plane of which includes the wellbore; however, it is also plane of which includes the wellbore; however, it is also agreed that, if formations are shallow, horizontal fractures can result. The specific orientation of the fracture plane with respect to the wellbore may be subject to debate if the well intersects a natural fracture. Two recent studies provide new information whereby log-log type-curve matching procedures may be applied to pressure data obtained from fractured (vertical or horizontal) wells. These studies also showed that, under conditions that would appear normal, it is likely that horizontal and vertical fractures would affect well behavior sufficiently such that the orientation, vertical vs horizontal, could be determined. The purpose of this paper is to illustrate the applicability of the results paper is to illustrate the applicability of the results obtained in Refs. 1 and 2. Vertically Fractured Wells As mentioned in Ref. 1, new solutions for the transient pressure behavior of a vertically fractured well were pressure behavior of a vertically fractured well were needed because earlier studies were not blended for type-curve analysis. This study examined two boundary conditions on the fracture plane. The first solution, like earlier studies, assumed that the fracture plane is of infinite conductivity. This implies that there is no pressure drop along the fracture plane at any instant in pressure drop along the fracture plane at any instant in time. The second solution, called the uniform-flux solution, gives the appearance of a high, but not infinite, conductivity fracture. (This boundary condition implies that the pressure along the fracture plane varies.) Application of these solutions to field data indicates that the uniform-flux solution usually matches pressure behavior of wells intersecting natural fractures better than does the infinite-conductivity solution. On the other hand, the infinite-conductivity solution often matches the behavior of hydraulically fractured, propped fractured wells better than does the uniform-flux solution. The Infinite-Conductivity Vertical Fracture in A Square Drainage Region Gringarten et al. have presented drawdown data for an infinite-conductivity vertical fracture located at the center of a closed-square drainage region and producing a lightly compressible constant-viscosity fluid at a constant rate. The solution for the producing pressure at time t is kh PwD (tD, Xe/Xf) = (pi - pwf),......(1) 141,2 qB where 0.000264 kt tD = .........................(2) c Xf2 JPT P. 887

Publisher

Society of Petroleum Engineers (SPE)

Subject

Strategy and Management,Energy Engineering and Power Technology,Industrial relations,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3