Rate Decline of Acid Fracturing Stimulated Well in Bi-Zone Composite Carbonate Gas Reservoirs

Author:

Li Li12,Tian Wei12,Shi Jiajia3,Tan Xiaohua3

Affiliation:

1. National Engineering Laboratory for Exploration and Development of Low Permeability Oil and Gas Fields, Chengdu 610500, China

2. Oil & Gas Technology Research Institute, Changqing Oil Field Company, Petro China, Xi’an 710021, China

3. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China

Abstract

This paper develops a model of the multi-wing finite-conductivity fractures considering stress sensitivity for low-permeability bi-zone composite gas reservoirs. A new semi-analytical solution in the Laplace domain is presented. The main solution includes the theory of source function, Laplace integral transformation, perturbation technique, and Stehfest numerical inversion. Wellbore pressure is obtained by coupling solutions of reservoirs and fractures. The results showed that the pressure and derivative curves generated by this model include a bi-linear flow stage. The model was validated by comparing its results with Wang’s results and the commercial well-test simulator; the results showed excellent agreement. This model illustrated the seepage characteristic of acid fracturing stimulated wells during refracturing treatment and how they are influenced by reservoir and hydraulic fractures parameters (asymmetrical factor and fractures distribution, etc.). The model is suitable to solve the solution of arbitrary-angle hydraulic fracture in refracturing and helpful to understand the transient production rate characteristic of the multi-wing fracturing well.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3