Affiliation:
1. Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin 300354, China
Abstract
Abstract
Current surgical instruments with fewer degrees-of-freedom (DOF) for minimally invasive surgery (MIS) have limited capability to perform complicated and precise procedures, such as suturing and knot-tying. To address such a problem, a modular dexterous hand-held surgical robot with an ergonomic handle and 4DOF interchangeable instruments was developed. The kinematic arrangement of the instrument and that of the handle were designed to be the same. A compact roll-yaw-roll transmission was proposed applying cable-driven mechanism. Performance experiments were carried out to evaluate the effectiveness of the overall system. The measured grip forces of the robot ranged from 8.63 N to 19.18 N. The suturing performance score of the robot was significantly higher than that of the conventional instrument (28.8 ± 5.02 versus 17.2 ± 7.43, p = 0.041). The trajectory tracking test and animal experiment verified the accuracy and feasibility of the robot. The proposed robot could improve the surgical performance of MIS, providing various end-effectors and having an intuitive interface in the meantime.
Funder
National Natural Science Foundation of China
National Key R&D Program of China
Subject
Biomedical Engineering,Medicine (miscellaneous)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献