Design and Evaluation of a Dexterous and Modular Hand-Held Surgical Robot for Minimally Invasive Surgery

Author:

Yang Yingkan1,Kong Kang1,Li Jianmin1,Wang Shuxin1,Li Jinhua1

Affiliation:

1. Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin 300354, China

Abstract

Abstract Current surgical instruments with fewer degrees-of-freedom (DOF) for minimally invasive surgery (MIS) have limited capability to perform complicated and precise procedures, such as suturing and knot-tying. To address such a problem, a modular dexterous hand-held surgical robot with an ergonomic handle and 4DOF interchangeable instruments was developed. The kinematic arrangement of the instrument and that of the handle were designed to be the same. A compact roll-yaw-roll transmission was proposed applying cable-driven mechanism. Performance experiments were carried out to evaluate the effectiveness of the overall system. The measured grip forces of the robot ranged from 8.63 N to 19.18 N. The suturing performance score of the robot was significantly higher than that of the conventional instrument (28.8 ± 5.02 versus 17.2 ± 7.43, p = 0.041). The trajectory tracking test and animal experiment verified the accuracy and feasibility of the robot. The proposed robot could improve the surgical performance of MIS, providing various end-effectors and having an intuitive interface in the meantime.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Publisher

ASME International

Subject

Biomedical Engineering,Medicine (miscellaneous)

Reference25 articles.

1. Minimally Invasive Surgery;J. Endoscopy,2002

2. Classification of Joints Used in Steerable Instruments for Minimally Invasive Surgery—A Review of the State of the Art;ASME J. Med. Devices.,2015

3. Technical Review of the Da Vinci Surgical Telemanipulator;Int. J. Med. Rob. Comput. Assist. Surg.,2013

4. Hand-Held Medical Robots;Ann. Biomed. Eng.,2014

5. Tool With Rotation Lock,2017

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3