Modified Levenberg–Marquardt Algorithm for Backpropagation Neural Network Training in Dynamic Model Identification of Mechanical Systems

Author:

Li Ming1,Wu Huapeng1,Wang Yongbo1,Handroos Heikki1,Carbone Giuseppe2

Affiliation:

1. Laboratory of Intelligent Machines, School of Energy Systems, Lappeenranta University of Technology, Skinnarinlankatu 34, Lappeenranta 53850, Finland e-mail:

2. Laboratory of Robotics and Mechatronics, University of Cassino and South Latium, Cassino (FR) 03043, Italy e-mail:

Abstract

For modeling a dynamic system in practice, it often faces the difficulty in improving the accuracy of the constructed analytical model, since some components of the dynamic model are often ignored deliberately due to the difficulty of identification. It is also unwise to apply the neural network to approximate the entire dynamic system as a black box, when the comprehensive knowledge of most components of the dynamics of a large system are available. This paper proposes a method that utilizes the backpropagation (BP) neural network to identify the unknown components of the dynamic system based on the experimental front-end inputs–outputs data of the entire system. It can avoid the difficulty in getting the direct training data for the unknown components, and brings great benefits in the practical application, since to get the front-end inputs–outputs data of the entire dynamic system is easier and cost-effective. In order to train such neural network for the unknown components of dynamics, a modified Levenberg–Marquardt algorithm, which can utilize the front-end inputs–outputs data of the entire dynamic system, has been developed in the paper. Three examples from different application points of view are presented in the paper, and the results show that the proposed modified Levenberg–Marquardt algorithm is efficient to train the neural network for the unknown components of the system based on the data of entire system. The constructed dynamics model, in which the unknown components are substituted by the neural network, can satisfy the requisite accuracy successfully in the computation.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3