Affiliation:
1. Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 e-mail:
Abstract
Double-sided incremental forming (DSIF) is a subcategory of general incremental sheet forming (ISF), and uses tools above and below a sheet of metal to squeeze and bend the material into freeform geometries. Due to the relatively slow nature of the DSIF process and the necessity to capture through-thickness mechanics, typical finite element simulations require weeks or even months to finish. In this study, an explicit finite element simulation framework was developed in LS-DYNA using fully integrated shell elements in an effort to lower the typical simulation time while still capturing the mechanics of DSIF. The tool speed, mesh size, element type, and amount of mass scaling were each varied in order to achieve a fast simulation with minimal sacrifice regarding accuracy. Using 8 CPUs, the finalized DSIF model simulated a funnel toolpath in just one day. Experimental strains, forces, and overall geometry were used to verify the simulation. While the simulation forces tended to be high, the trends were still well captured by the simulation model. The thickness and in-plane strains were found to be in good agreement with the experiments.
Funder
U.S. Department of Energy
National Science Foundation
Subject
Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献