Prediction of Forming Limit in Single Point Incremental Forming With the Ductile Fracture Criterion

Author:

Huang Y.1,Wang Y. J.1,Cao J.1,Li M.2

Affiliation:

1. Northwestern University, Evanston, IL

2. Alcoa Technical Center, Pittsburgh, PA

Abstract

Many experiments have been conducted to investigate the forming limit in single point incremental forming (SPIF). The forming limit curve (FLC) generated from these experiments follows a linear line with a negative slope in the positive minor strain side of the forming limit diagram (FLD). It is also found that, in general, for the same material subjected to the SPIF process, the failure strain level greatly exceeds the traditional FLC based on theories of the plastic instability [Iseki and Kumon, 1994]. Currently, no theoretical work or no criterion was proposed to predict this FLC in the SPIF. In this paper, the criterion for the ductile fracture [Oyane, 1980] is introduced to try to predict the forming limit of the material in the SPIF. Based on the calculated stress and strain from the finite element simulation and the ductile fracture criterion, the fracture initiation site and the forming limit are predicted. The predicted results are compared with that from the SPIF experiment to verify the feasibility of the proposed method.

Publisher

ASMEDC

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fracture investigation in single point incremental forming of the Al/Cu laminated sheets using coupled damage plasticity model;CIRP Journal of Manufacturing Science and Technology;2023-07

2. Numerical Investigation of Step Size Effect on Formability of 2024-T3 Aluminum in Incremental Forming;Journal of Manufacturing and Materials Processing;2023-03-19

3. Finite element simulations and experimental verifications for forming limit curve determination of two-layer aluminum/brass sheets considering the incremental forming process;Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications;2021-10-12

4. Incremental sheet forming towards biomedical implants: a review;Journal of Materials Research and Technology;2020-07

5. Prediction of rigid body motion in multi-pass single point incremental forming;Journal of Materials Processing Technology;2019-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3