Affiliation:
1. Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556-0539
Abstract
Background. This article presents a method for describing the dynamic performance of multilegged robots. It involves examining how well the legged system uses ground contact to produce acceleration of its body; these abilities are referred to as its force and acceleration capabilities. These capabilities are bounded by actuator torque limits and the no-slip condition. Method of Approach. The approach followed here is based on the dynamic capability equations, which are extended to consider frictional ground contact as well as the changes in degrees-of-freedom that occurs as the robot goes into and out of contact with the ground. Results. The analysis describes the maximum translational and rotational accelerations of the main-body that are guaranteed to be achievable in every direction without causing slipping at the contact points or saturating an actuator. Conclusion. This analysis provides a description of the mobility and agility of legged robots. The method is illustrated using a hexapod as an example.
Subject
Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献