Multi-Objective Optimal Design of a Cable-Driven Parallel Robot Based on an Adaptive Adjustment Inertia Weight Particle Swarm Optimization Algorithm

Author:

Zhou Bin1,Li Sipan2,Zi Bin2,Chen Bing2,Zhu Weidong3

Affiliation:

1. Hefei University of Technology School of Mechanical Engineering;, Intelligent Interconnected Systems Laboratory of Anhui Province, , 193 Tunxi Road, Hefei 230009 , China

2. Hefei University of Technology School of Mechanical Engineering, , 193 Tunxi Road, Hefei 230009 , China

3. University of Maryland, Baltimore County Department of Mechanical Engineering, , 1000 Hilltop Circle, Baltimore, MD 21250

Abstract

Abstract Cable-driven parallel robots (CDPRs) have been widely used in engineering fields because of their significant advantages including high load-bearing capacity, large workspace, and low inertia. However, the impact of convergence speed and solution accuracy of optimization approaches on optimal performances can become a key issue when it comes to the optimal design of CDPR applied to large storage space. An adaptive adjustment inertia weight particle swarm optimization (AAIWPSO) algorithm is proposed for the multi-objective optimal design of CDPR. The kinematic and static models of CDPR are established based on the principle of virtual work. Subsequently, two performance indices including workspace and dexterity are derived. A multi-objective optimization model is established based on performance indices. The AAIWPSO algorithm introduces an adaptive adjustment inertia weight to improve the convergence efficiency and accuracy of traditional particle swarm optimization (PSO) algorithm. Numerical examples demonstrate that final convergence values of the objective function by the AAIWPSO algorithm can almost be 14∼20% and 19∼40% higher than those by the PSO algorithm and genetic algorithm (GA) for the optimal design of CDPR with different configurations and masses of end-effectors, respectively.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Anhui Province

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3