Fluid-Structure Interaction Forces at Pump-Impeller-Shroud Surfaces for Axial Vibration Analysis

Author:

Childs D. W.1

Affiliation:

1. Turbomachinery Laboratories, Mechanical Engineering Department, Texas A&M University, College Station, TX 77843

Abstract

Solutions are presented for the dynamic axial forces developed by pump-impeller-shroud surfaces. A bulk-flow model of the leakage path between the impeller and the housing is used for the analysis consisting of the path-momentum, circumferential-momentum, and continuity equations. Shear stresses at the impeller and housing surfaces are modeled according to Hirs’ turbulent lubrication model. The governing equations were developed earlier to examine lateral rotordynamic forces developed by impellers. A perturbation expansion of the governing equations in the eccentricity ratio yields a set of zeroth and first-order governing equations. The zeroth-order equations define the leakage rate, velocity distributions, and the pressure distribution for a centered impeller position. The first-order equations define the perturbations in the velocity and pressure distributions due to axial motion of the impeller. Integration of the perturbed pressure and shear-stress distribution acting on the rotor yields the reaction forces acting on the impeller face. Calculated results yield predictions of resonance peaks of the fluid within the annulus formed by the impeller shroud and housing. Centrifugal acceleration terms in the path-momentum equation are the physical origin of these unexpected predictions. For normalized tangential velocities at the inlet to the annulus, uθo(0) = Uθo(0)/Riω of 0.5, the phenomenon is relatively minor. As uθo(0) is increased to 0.7, sharper peaks are predicted. The fluid modes are well damped in all cases. Numerical results are presented for a double-suction single-stage pump which indicate that the direct stiffness of the perturbed impeller shroud forces are negligible. Small but appreciable added-mass and damping terms are developed which have a modest influence on damping and peak-amplitude excitation frequency. The forces only became important for pumps with very low axial natural frequencies in comparison to the running speed, viz., ten percent of the running speed or lower.

Publisher

ASME International

Subject

General Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3