Rotordynamic Force Prediction of a Shrouded Centrifugal Pump Impeller—Part II: Stability Analysis

Author:

Kim Eunseok1,Palazzolo Alan2

Affiliation:

1. Mem. ASME Department of Mechanical Engineering, Texas A&M University, College Station, TX 77840 e-mail:

2. Fellow ASME Department of Mechanical Engineering, Texas A&M University, College Station, TX 77840 e-mail:

Abstract

In Paper I, some test cases of centrifugal pump impellers which showed unconventional impedances curves were reviewed and possible sources of the bump and dip in the impedance curves were investigated by simulating a wear-ring seal pump impeller. In this paper, the unconventional impedances determined in Paper I are converted into a form for inclusion in rotordynamic stability and forced response analyses. First of all, a finite element (FE) rotor model is considered to investigate the influence of the bump and dip in the impedance curves on the rotordynamic stability. With the same FE model, speed-dependent impedances are calculated to obtain unbalance frequency response. Finally, a new linear curve-fit approach is developed to model the fluctuating impedances since the unconventional impedance cannot be expressed by the second-order polynomials with the rotordynamic coefficients (stiffness, damping, and mass). In order to validate the newly developed method, a Jeffcott rotor model with the impeller forces is considered and rotordynamic stability analysis is implemented. The results of the analysis show that the existence of the bump and dip in the impedance curves may further destabilize the rotor system.

Publisher

ASME International

Subject

General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3