Affiliation:
1. Mem. ASME Department of Mechanical Engineering, Texas A&M University, College Station, TX 77840 e-mail:
2. Fellow ASME Department of Mechanical Engineering, Texas A&M University, College Station, TX 77840 e-mail:
Abstract
In Paper I, some test cases of centrifugal pump impellers which showed unconventional impedances curves were reviewed and possible sources of the bump and dip in the impedance curves were investigated by simulating a wear-ring seal pump impeller. In this paper, the unconventional impedances determined in Paper I are converted into a form for inclusion in rotordynamic stability and forced response analyses. First of all, a finite element (FE) rotor model is considered to investigate the influence of the bump and dip in the impedance curves on the rotordynamic stability. With the same FE model, speed-dependent impedances are calculated to obtain unbalance frequency response. Finally, a new linear curve-fit approach is developed to model the fluctuating impedances since the unconventional impedance cannot be expressed by the second-order polynomials with the rotordynamic coefficients (stiffness, damping, and mass). In order to validate the newly developed method, a Jeffcott rotor model with the impeller forces is considered and rotordynamic stability analysis is implemented. The results of the analysis show that the existence of the bump and dip in the impedance curves may further destabilize the rotor system.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献