Investigation on axial thrust behavior of balance piston system for a rocket pump

Author:

Sakai Kento,Iwase Bungo,Matsumoto Keisuke,Miyagawa Kazuyoshi,Kawasaki Satoshi

Abstract

Abstract High stability in axial direction is required for rocket pumps operated under extremely low-temperature and high-pressure conditions, turbopumps therefore uses balance piston (BP) system for balancing their axial thrust. The BP system is stable under quasi-static conditions. However, BP system might become dynamically unstable under some condition. Thus it is fundamental for stability evaluation of turbopumps to predict static/dynamic characteristics in axial direction of BP system. Furthermore, we focus on characteristic change by cavitation which often occurs in the pump inlet. In this paper, an experimental study of a model turbopump which had an unshrouded impeller equipped with BP system was carried out. We experimented it with an active magnetic bearing (AMB) test facility in order forcibly to oscillate it with an optional amplitude and frequency. In addition, we examined characteristics of BP system by three-dimensional computational fluid dynamics (3D-CFD) simulations. The results of 3D-CFD simulations were in good agreement with these tendency of BP system, and were effective in predicting its static/dynamic characteristics. Some cases showed that dynamic characteristic of BP system became unstable by growth of cavitation, therefore we suggest that the influence of cavitation must also be considered in the design of turbopump.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference10 articles.

1. Numerical analysis of the unsteady fluid force acting on an axially oscillating balance piston;Kimura;Transactions of the JSME,2012

2. Internal Flow and Axial Thrust Balancing of a Rocket Pump;Shimura;Journal of Fluids Engineering,2012

3. Stability of an Axial Thrust Self-Balancing System;Shimura;Journal of Fluids Engineering,2013

4. Experimental study on stability of axial direction of Balance Piston mechanism;Hiromichi;Transactions of the JSME,2019

5. Fluid-Structure Interaction Forces at Pump-Impeller-Shroud Surfaces for Axial Vibration Analysis;Childs;Journal of Vibration and Acoustics,1991

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3