Reducing Instrumentation Errors Caused by Circumferential Flow-Field Variations in Multistage Axial Compressors

Author:

Chilla M.1,Pullan G.1,Gallimore S.1

Affiliation:

1. Whittle Laboratory, University of Cambridge, Cambridge, CB3 0DY, UK

Abstract

Abstract The effects of blade row interactions on stator-mounted instrumentation in axial compressors are investigated using unsteady numerical calculations. The test compressor is an eight-stage machine representative of an aero-engine core compressor. For the unsteady calculations, a 180-deg sector (half-annulus) model of the compressor is used. It is shown that the time-mean flow field in the stator leading edge planes is circumferentially nonuniform. The circumferential variations in stagnation pressure and stagnation temperature, respectively, reach 4.2% and 1.1% of the local mean. Using spatial wave number analysis, the incoming wakes from the upstream stator rows are identified as the dominant source of the circumferential variations in the front and middle of the compressor, while toward the rear of the compressor, the upstream influence of the eight struts in the exit duct becomes dominant. Based on three circumferential probes, the sampling errors for stagnation pressure and stagnation temperature are calculated as a function of the probe locations. Optimization of the probe locations shows that the sampling error can be reduced by up to 77% by circumferentially redistributing the individual probes. The reductions in the sampling errors translate to reductions in the uncertainties of the overall compressor efficiency and inlet flow capacity by up to 50%. Recognizing that data from large-scale unsteady calculations are rarely available in the instrumentation phase for a new test rig or engine, a method for approximating the circumferential variations with single harmonics is presented. The construction of the harmonics is based solely on the knowledge of the number of stators in each row and a small number of equispaced probes. It is shown how excursions in the sampling error are reduced by increasing the number of circumferential probes.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3