An Experimental Study of Vane Clocking Effects on Embedded Compressor Stage Performance

Author:

Key Nicole L.1,Lawless Patrick B.1,Fleeter Sanford1

Affiliation:

1. Purdue University, West Lafayette, IN 47907

Abstract

Previous research has shown that vane clocking, the circumferential indexing of adjacent vane rows with similar vane counts, can be an effective means to increase stage performance, reduce discrete frequency noise, and/or reduce the unsteady blade forces that can lead to high cycle fatigue. The objective of this research was to experimentally investigate the effects of vane clocking in an embedded compressor stage, focusing on stage performance. Experiments were performed in the intermediate-speed Purdue three-stage compressor, which consists of an IGV followed by three stages. The IGV, Stator 1, and Stator 2 vane rows have identical vane counts, and the effects of vane clocking were studied on Stage 2. Much effort went into refining performance measurements to enable the detection of small changes in stage efficiency associated with vane clocking. At design loading, the change in stage efficiency between the maximum and minimum efficiency clocking configurations was 0.27 points. The maximum efficiency clocking configuration positioned the Stator 1 wake at the Stator 2 leading edge. This condition produced a shallower and thinner Stator 2 wake compared with the clocking configuration that located the wake in the middle of the Stator 2 passage. At high loading, the change in Stage 2 efficiency associated with vane clocking effects increased to 1.07 points; however, the maximum efficiency clocking configuration was the case where the Stator 1 wake passed through the middle of the downstream vane passage. Thus, impingement of the upstream vane wake on the downstream vane leading edge resulted in the best performance at design point but provided the lowest efficiency at an off-design condition.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3