Numerical Predictions of Three-Dimensional Unsteady Turbulent Film-Cooling for Trailing Edge of Gas-Turbine Blade Using Large Eddy Simulation

Author:

Khalil Ahmed1,Kayed Hatem1,Hanafi Abdallah1,Nemitallah Medhat2,Habib Mohamed3

Affiliation:

1. Mechanical Power Department, Faculty of Engineering, Cairo University, Giza 12613, Egypt

2. KACST TIC on CCS and Mechanical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia e-mail:

3. KACST TIC on CCS and Mechanical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

Abstract

This work investigates the performance of film-cooling on trailing edge of gas turbine blades using unsteady three-dimensional numerical model adopting large eddy simulation (LES) turbulence scheme in a low Mach number flow regime. This study is concerned with the scaling parameters affecting effectiveness and heat transfer performance on the trailing edge, as a critical design parameter, of gas turbine blades. Simulations were performed using ANSYS-fluentworkbench 17.2. High quality mesh was adapted, whereas the size of cells adjacent to the wall was optimized carefully to sufficiently resolve the boundary layer to obtain insight predictions of the film-cooling effectiveness on a flat plate downstream the slot opening. Blowing ratio, density ratio, Reynolds number, and the turbulence intensity of the mainstream and coolant flow are optimally examined against the film-cooling effectiveness. The predicted results showed a great agreement when compared with the experiments. The results show a distinctive behavior of the cooling effectiveness with blowing ratio variation as it has a dip in vicinity of unity which is explained by the behavior of the vortex entrainment and momentum of coolant flow. The negative effect of the turbulence intensity on the cooling effectiveness is demonstrated as well.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3