Affiliation:
1. Department of Mechanical Engineering, University of Wisconsin-Milwaukee, 115 East, Reindl Way, Glendale, WI 53212
Abstract
Abstract
The study presents the investigation on heat transfer distribution along a gas turbine blade internal cooling channel. Six different cases were considered in this study, using the smooth surface channel as a baseline. Three different dimples depth-to-diameter ratios with 0.1, 0.25, and 0.50 were considered. Different combinations of partial spherical and leaf dimples were also studied with the Reynolds numbers of 6,000, 20,000, 30,000, 40,000, and 50,000. In addition to the experimental investigation, the numerical study was conducted using a large eddy simulation (LES) to validate the data. It was found that the highest depth-to-diameter ratio showed the highest heat transfer rate. However, the deepest dimpled channel shows the highest pressure drop, which affects the overall thermal performance of the cooling channel. The results showed that the leaf dimpled surface is the best cooling channel based on the highest Reynolds number's heat transfer enhancement and friction factor. However, at the lowest Reynolds number, partial spherical dimples with a 0.25 depth-to-diameter ratio showed the highest thermal performance.
Subject
Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献