Optimization of Supercritical CO2 Brayton Cycle for Simple Cycle Gas Turbines Exhaust Heat Recovery Using Genetic Algorithm

Author:

Khadse Akshay1,Blanchette Lauren1,Kapat Jayanta1,Vasu Subith1,Hossain Jahed1,Donazzolo Adrien2

Affiliation:

1. Mechanical and Aerospace Engineering Department, University of Central Florida, Orlando, FL 32816 e-mail:

2. École nationale supérieure de physique, électronique et Matériaux, Grande école, Grenoble, France e-mail:

Abstract

For the application of waste heat recovery (WHR), supercritical CO2 (S-CO2) Brayton power cycles offer significant suitable advantages such as compactness, low capital cost, and applicability to a broad range of heat source temperatures. The current study is focused on thermodynamic modeling and optimization of recuperated (RC) and recuperated recompression (RRC) configurations of S-CO2 Brayton cycles for exhaust heat recovery from a next generation heavy duty simple cycle gas turbine using genetic algorithm (GA). This nongradient based algorithm yields a simultaneous optimization of key S-CO2 Brayton cycle decision variables such as turbine inlet temperature, pinch point temperature difference, compressor pressure ratio, and mass flow rate of CO2. The main goal of the optimization is to maximize power out of the exhaust stream which makes it single objective optimization. The optimization is based on thermodynamic analysis with suitable practical assumptions which can be varied according to the need of user. The optimal cycle design points are presented for both RC and RRC configurations and comparison of net power output is established for WHR. For the chosen exhaust gas mass flow rate, RRC cycle yields more power output than RC cycle. The main conclusion drawn from the current study is that the choice of best cycle for WHR actually depends heavily on mass flow rate of the exhaust gas. Further, the economic analysis of the more power producing RRC cycle is performed and cost comparison between the optimized RRC cycle and steam Rankine bottoming cycle is presented.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3