Effect of Ground Arrangements on Swirling Flow in a Rectangular Duct Subjected to Electrohydrodynamic Effects

Author:

Saneewong Na Ayuttaya Suwimon1,Chaktranond Chainarong1,Rattanadecho Phadungsak1,Kreewatcharin Thatchapong1

Affiliation:

1. Department of Mechanical Engineering,Faculty of Engineering, Thammasat University (Rangsit Campus), Pathumthani, 12120, Thailand

Abstract

This study presents a numerical analysis of electric fields distribution, characteristics of swirling flow and effect of inlet velocity (u0) from two ground arrangements, i.e., wire-to-wire (WW) and wire-to-plate (WP) in a rectangular duct subjected to electrohydrodynamic. In both arrangements, location of an electrode wire, which is suspended from the upper wall of the duct, is initially located at the centerline of the rectangular duct, and ground is fixed on the bottom wall. In WW, position of electrode is varied in the vertical direction, while in WP, they are varied both in the vertical and horizontal directions. Electrical voltage of 20 kV is applied and inlet velocity in range of 0.3 – 1 m/s is selected. The numerical results show that electric fields distributions from both arrangements are quite different. These results cause the characteristics of swirling flows to appear differently. In both arrangements the maximum electric fields intensity are not different for each identical gap value. When the gap is closer, electric fields increase significantly. When inlet velocity of air is increased, the strength of swirling flow is decreased because inertial force is superior to the electric body force.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3