The Contaminate Infiltration Model for Heat and Concentration Transport Within Porous Media Under Electromagnetic Fields

Author:

Montienthong Prempreeya1,Rattanadecho Phadungsak2,Gibson Andy3

Affiliation:

1. Department of Sustainable Development Technology, Faculty of Science and Technology, Thammasat University (Rangsit Campus) , Pathumthani 12120, Thailand

2. Center of Excellence in Electromagnetic Energy Utilization in Engineering (CEEE), Department of Mechanical Engineering, Faculty of Engineering, Thammasat University (Rangsit Campus) , Pathumthani 12120, Thailand

3. Faculty of Science and Engineering, Manchester Metropolitan University , All Saints Building, All Saints, Manchester M15 6BH, UK

Abstract

Abstract This paper studies the groundwater model of the influence of physical parameters, including input frequency of the electromagnetic, and input concentration of contaminants in groundwater, on the velocity pattern, temperature distribution, and concentration distribution of convective heat transfer in saturated porous media as soil. The mathematical models have solved seven equations in this simulation study, i.e., Maxwell's equation, heat transfer in fluid and solid phases, momentum, and concentration equations. The effect of frequencies and input concentrations of contaminants on the convective heat transfer and concentration distribution in porous media as soil under an electromagnetic wave is investigated. The results indicate that the electromagnetic wave frequency of 2.45 GHz has the most influence on the temperature distribution, velocity patterns, and concentration distribution of the fluid within the porous media as soil during saturated flow in groundwater. The inlet fluid concentration of the contaminant at 30 mol/dm3 has the most impact on the temperature distribution between the implementation of an electromagnetic wave of 2.45 GHz. So, this numerical model provides simple decision data based on comparing the maximum contaminant concentrations of porous media as soil samples with surface soil screening levels such as petroleum engineering and agricultural engineering. This result can be used by the engineer as a guide to determine whether further investigation is needed.

Funder

Thailand Research Fund

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3