Hierarchical Modeling of Heat Transfer in Silicon-Based Electronic Devices

Author:

Goicochea Javier V.1,Madrid Marcela2,Amon Cristina3

Affiliation:

1. Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213

2. Pittsburgh Supercomputing Center, Pittsburgh, PA 15213

3. Department of Mechanical and Industrial Engineering, University of Toronto, ON, M5S 1A4, Canada

Abstract

AbstractA hierarchical model of heat transfer for the thermal analysis of electronic devices is presented. The integration of participating scales (from nanoscale to macroscales) is achieved by (i) estimating the input parameters and thermal properties to solve the Boltzmann transport equation (BTE) for phonons using molecular dynamics (MD), including phonon relaxation times, dispersion relations, group velocities, and specific heat, (ii) applying quantum corrections to the MD results to make them suitable for the solution of BTE, and (iii) numerically solving the BTE in space and time subject to different boundary and initial conditions. We apply our hierarchical model to estimate the silicon out-of-plane thermal conductivity and the thermal response of an silicon on insulator (SOI) device subject to Joule heating. We have found that relative phonon contribution to the overall conductivity changes as the dimension of the domain is reduced as a result of phonon confinement. The observed reduction in the thermal conductivity is produced by the progressive transition of modes in the diffusive regime (as in the bulk) to transitional and ballistic regimes as the film thickness is decreased. In addition, we have found that relaxation time expressions for optical phonons are important to describe the transient response of SOI devices and that the characteristic transport regimes, determined with Holland and Klemens phonon models, differ significantly.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference50 articles.

1. Quantum Theory of Solids

2. Thermal Conductivity and Lattice Vibrational Modes;Klemens

3. Theory of Thermal Conductivity of Solids;Klemens

4. Analysis of Lattice Thermal Conductivity;Holland;Phys. Rev.

5. Electrons and Phonons

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3