Heat dissipation in partially perforated phononic nano-membranes with periodicities below 100 nm

Author:

Massoud Antonin M.12,Lacatena Valeria34ORCID,Haras Maciej34ORCID,Dubois Emmanuel3ORCID,Monfray Stéphane4,Bluet Jean-Marie1ORCID,Chapuis Pierre-Olivier2ORCID,Robillard Jean-François3ORCID

Affiliation:

1. Univ Lyon, Institut des Nanotechnologies de Lyon (INL), CNRS, INSA de Lyon, F-69621 Villeurbanne, France

2. Univ Lyon, CNRS, INSA-Lyon, Université Claude Bernard Lyon 1, CETHIL UMR5008, F-69621 Villeurbanne, France

3. University Lille, CNRS, Centrale Lille, Junia, University Polytechnique Hauts-de-France, UMR 8520 - IEMN–Institut d’Electronique de Microélectronique et de Nanotechnologie, F-59000 Lille, France

4. STMicroelectronics, 850, rue Jean Monnet, F-38926 Crolles, France

Abstract

Understanding how thermal-phonon paths can be shaped is key for controlling heat dissipation at the nanoscale. Thermophononic crystals are periodic porous nanostructures with thermal conductivity deviating from effective medium theory, which is possible if the characteristic sizes are of the order of phonon mean free paths and/or if phonons are forced to flow in privileged directions. We investigate suspended silicon nanomembranes with a periodic array of partially perforated holes of original paraboloid shape, with all characteristic lengths below 100 nm. Results from scanning thermal microscopy, a thermal sensing technique derived from atomic force microscopy, indicate that partial perforation of the membranes impacts heat conduction moderately, with the holey crystals showing a thermal conductivity reduction by a factor 6 in comparison to the bulk and a factor 2.5 in comparison to the non-perforated membrane. The impact of the phononic shapes is analyzed in light of a complementary Monte Carlo ray-tracing estimate of the effective phonon mean free paths that include multiple phonon reflection and highlights phonon backscattering.

Funder

Institut National des Sciences Appliquées de Lyon

Agence Nationale de la Recherche

FP7 Nanosciences, Nanotechnologies, Materials and New Production Technologies

European Research Council

Projet Nano 2017

Publisher

AIP Publishing

Subject

General Engineering,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3