Quantifying Uncertainty in Multiscale Heat Conduction Calculations

Author:

Marepalli Prabhakar1,Murthy Jayathi Y.1,Qiu Bo2,Ruan Xiulin3

Affiliation:

1. School of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712-0292 e-mail:

2. Department of Mechanical Engineering, Massachusetts Institute of Technology, Boston, MA 02139 e-mail:

3. School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907 e-mail:

Abstract

In recent years, there has been interest in employing atomistic computations to inform macroscale thermal transport analyses. In heat conduction simulations in semiconductors and dielectrics, for example, classical molecular dynamics (MD) is used to compute phonon relaxation times, from which material thermal conductivity may be inferred and used at the macroscale. A drawback of this method is the noise associated with MD simulation (here after referred to as MD noise), which is generated due to the possibility of multiple initial configurations corresponding to the same system temperature. When MD is used to compute phonon relaxation times, the spread may be as high as 20%. In this work, we propose a method to quantify the uncertainty in thermal conductivity computations due to MD noise, and its effect on the computation of the temperature distribution in heat conduction simulations. Bayesian inference is used to construct a probabilistic surrogate model for thermal conductivity as a function of temperature, accounting for the statistical spread in MD relaxation times. The surrogate model is used in probabilistic computations of the temperature field in macroscale Fourier conduction simulations. These simulations yield probability density functions (PDFs) of the spatial temperature distribution resulting from the PDFs of thermal conductivity. To allay the cost of probabilistic computations, a stochastic collocation technique based on generalized polynomial chaos (gPC) is used to construct a response surface for the variation of temperature (at each physical location in the domain) as a function of the random variables in the thermal conductivity model. Results are presented for the spatial variation of the probability density function of temperature as a function of spatial location in a typical heat conduction problem to establish the viability of the method.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3