Thermal Properties for Bulk Silicon Based on the Determination of Relaxation Times Using Molecular Dynamics

Author:

Goicochea Javier V.1,Madrid Marcela2,Amon Cristina3

Affiliation:

1. Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213

2. Pittsburgh Supercomputing Center, Pittsburgh, PA 15213

3. Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S 1A4, Canada

Abstract

Molecular dynamics simulations are performed to estimate acoustical and optical phonon relaxation times, dispersion relations, group velocities, and specific heat of silicon needed to solve the Boltzmann transport equation (BTE) at 300 K and 1000 K. The relaxation times are calculated from the temporal decay of the autocorrelation function of the fluctuation of total energy of each normal mode in the ⟨100⟩ family of directions, where the total energy of each mode is obtained from the normal mode decomposition of the motion of the silicon atoms over a period of time. Additionally, silicon dispersion relations are directly determined from the equipartition theorem obtained from the normal mode decomposition. The impact of the anharmonic nature of the potential energy function on the thermal expansion of the crystal is determined by computing the lattice parameter at the cited temperatures using a NPT (i.e., constant number of atoms, pressure, and temperature) ensemble, and are compared with experimental values reported in the literature and with those computed analytically using the quasiharmonic approximation. The dependence of the relaxation times with respect to the frequency is identified with two functions that follow the functional form of the relaxation time expressions reported in the literature. From these functions a simplified version of relaxation times for each normal mode is extracted. Properties, such as group and phase velocities, thermal conductivity, and mean free path, needed to further develop a methodology for the thermal analysis of electronic devices (i.e., from nano- to macroscales) are determined once the relaxation times and dispersion relations are obtained. The thermal properties are validated by comparing the BTE-based thermal conductivity against the predictions obtained from the Green–Kubo method. It is found that the relaxation times closely resemble the ones obtained from perturbation theory at high temperatures; the contribution to the thermal conductivity of the transverse acoustic, longitudinal acoustic, and longitudinal optical modes being approximately 30%, 60%, and 10%, respectively, and the contribution of the transverse optical mode negligible.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3