Molecular dynamics study on the contribution of anisotropic phonon transmission to thermal conductivity of silicon

Author:

Cheng Chao,Wang ShaoqingORCID

Abstract

Abstract The analysis of the contribution of anisotropic phonon transmission to thermal conductivity is helpful to focus on high-energy phonons in heat transport. We calculated a series of anharmonic phonon properties and heat transport properties of Si by Fourier projection method from atomic trajectories. Under this theoretical scheme, we have obtained very consistent results with the experimental data through very low computational cost, especially the anharmonic phonon properties at high temperature. We carefully analyze the contribution of different phonons to thermal conductivity and the anisotropic feature of phonon. It is found that the longitudinal acoustic (LA) phonons have the special thermal broadening near the point L at the boundary of the Brillouin zone. The optical phonons cannot be safely ignored in the study of heat transport, especially the longitudinal optical phonon that shows a large contribution to thermal conductivity at room temperature. The thermal conductivity contribution of different phonons varies with temperature. The anisotropic features of the contribution of different phonons to thermal conductivity are mainly reflected in the short-wavelength phonons. Our work explains the reason why other research works have different opinions on whether LA phonon is the main contributor of thermal conductivity. These investigations also provide insights for further understanding phonon heat transport and distribution of high-energy phonons.

Funder

SYNL Basic Frontier & Technological Innovation Research Project

CAS Frontier Science Research Project

National Key R&D Program of China

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3