Dynamic Modeling and Optimal Control of Rotating Euler-Bernoulli Beams

Author:

Zhu W. D.1,Mote C. D.2

Affiliation:

1. Department of Mechanical Engineering, University of North Dakota, Grand Forks, ND 58202

2. Department of Mechanical Engineering, University of California at Berkeley, Berkeley, CA 94720

Abstract

The nonlinear integro-differential equations, describing the transverse and rotational motions of a nonuniform Euler-Bernoulli beam with end mass attached to a rigid hub, are derived. The effects of both the linear and nonlinear elastic rotational couplings are investigated. The linear couplings are exactly accounted for in a decoupled Euler-Bernoulli beam model and their effects on the eigensolutions and response are significant for a small ratio of hub-to-beam inertia. The nonlinear couplings with a resultant stiffening effect are negligible for small angular velocities. A discretized model, suitable for the study of large angle, high speed rotation of a nonuniform beam, is presented. The optimal control moment for simultaneous vibration suppression of the beam at the end of a prescribed rotation is determined. Influences of the nonlinearity, nonuniformity, maneuver time, and inertia ratio on the optimal control moment and system response are discussed.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3