Initial Experiments on the End-Point Control of a Flexible One-Link Robot

Author:

Cannon Robert H.1,Schmitz Eric1

Affiliation:

1. Stanford University Department of Aeronautics and Astronautics Stanford, California 94305

Abstract

It has been known for some time ( Gevarter 1970) that if a flexible structure is controlled by locating every sensor exactly at the actuator it will control, then stable operation is easy to achieve. Nearly all commercial robots are controlled in this way, for this reason. So are most flexible spacecraft. Conversely, when one attempts to control a flexible struc ture by applying control torques at one end that are based on a sensor at the other end, the problem of achieving stability is severe. Solving it is an essential step for better control in space: the space-shuttle arm is a cogent example. The next generation of industrial robots will also need such control capability, for they will need to be much lighter in weight ( to achieve quick response with modest energy), and they will need to achieve greater precision by employing end-point sensing. A set of experiments has been constructed to demonstrate control strategies for a single-link, very flexible manipulator, where the position of one end is to be sensed and precisely positioned by torquing at the other end. The objective of this first set of experiments is to uncover and solve problems related to the control of very flexible manipulators where sen sors are not colocated with the actuator. The experimental arrangement described here is also a test bed for new designs for flexible-structure controllers, designs that use insensitive, reduced-order control and adaptive control methods, for example. This paper describes the experimental arrangement, model identification, control design, and first experimental results. Some interesting results are the following. First, good stability can be achieved for such noncolocated systems, and reponse can be achieved that is effectively three times faster than the first natural cantilever period of the system: but a good model of the system dynamics and rather sophisticated control algorithms are essential to doing so. Even then, the system will always be conditionally stable. In addition to the tip sensor, a colocated rate sensor and nearly colocated strain gauges have been found to be very useful for achieving good closed-loop performance, that is, high gain and high band width. Second, there is an ultimate physical limit to achiev able response time, namely, the time required for a wave to travel the length of the member. Well-designed controllers can approach this limit. Third, the use of end-point sensing makes less critical the elaborate dynamic conditioning of position-command signals— "model-following " differentia tors, feed-forward, and the like—such as are typically needed in present-generation robots that use "dead reckoning" in lieu of end-point sensing. With end-point sensing, feedback alone ( suitably conditioned) is sufficient to whip the tip to the commanded position and hold it there precisely. Even more important, a shift in, for example, workpiece with respect to robot base, no longer produces an error.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

Cited by 697 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design and Development of a Three-Link Rigid-Flexible Manipulator;Recent Advances in Industrial Machines and Mechanisms;2024

2. Vibration of flexible robots: Dynamics and novel synthesis of unbounded trajectories;Annals of Robotics and Automation;2023-12-13

3. A Task-Aware Lightweight Link Design Framework for Robots Under Dynamic Loading;2023 IEEE-RAS 22nd International Conference on Humanoid Robots (Humanoids);2023-12-12

4. Noncollocated Proprioceptive Sensing for Lightweight Flexible Robotic Manipulators;IEEE/ASME Transactions on Mechatronics;2023-12

5. On the zeros of three-DoF damped flexible systems;Journal of Sound and Vibration;2023-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3