Affiliation:
1. Institut für Thermische Strömungsmaschinen, Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany
Abstract
Abstract
The present experimental study is part of a comprehensive analysis accounting for heat transfer and aerodynamic losses on a highly loaded low pressure turbine blade with varying surface roughness. Whereas Part I focuses on heat transfer measurements at airfoil midspan with different deterministic surface roughnesses, Part II investigates surface roughness effects on aerodynamic losses of the same airfoil. A set of different arrays of deterministic roughness (the same as used in Part I) is investigated in these experiments. The height and eccentricity of the roughness elements are varied, showing the combined influence of roughness height and anisotropy on the losses produced in the boundary layers. It is shown that the boundary layer loss is dominated by the suction side. Therefore, the investigations focus on measurements of the suction side boundary layer thickness at midspan directly upstream of the trailing edge. The experiments are conducted at several freestream turbulence levels (Tu1=1.4–10.1%) and different Reynolds numbers. The measurements reveal that suction side boundary layer thickness is increased by up to 190% if surface roughness shifts the transition onset upstream. However, in some cases, at low Reynolds numbers and freestream turbulence, surface roughness suppresses boundary layer separation and decreases the trailing edge boundary layer thickness by up to 30%.
Reference33 articles.
1. Loss Mechanisms in Turbomachines;Denton;ASME J. Turbomach.
2. An Examination of the Contributions to Loss on a Transonic Turbine Blade in Cascade;Mee
3. Surface Roughness Measurements on Gas Turbine Blades;Taylor;ASME J. Turbomach.
4. The Many Faces of Turbine Surface Roughness;Bons
5. Hosni, M. H.
, 1989, “Measurement and Calculation of Surface Roughness Effects on Turbulent Flow and Heat Transfer,” Ph.D. thesis, Mississippi State University, Mississippi State, MS.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献