The Many Faces of Turbine Surface Roughness

Author:

Bons Jeffrey P.1,Taylor Robert P.2,McClain Stephen T.2,Rivir Richard B.3

Affiliation:

1. Air Force Institute of Technology, Wright-Patterson AFB, OH

2. Mississippi State University, Mississippi State, MS

3. Air Force Research Laboratory, Wright-Patterson AFB, OH

Abstract

Results are presented for contact stylus measurements of surface roughness on in-service turbine blades and vanes. Nearly 100 turbine components were assembled from four land-based turbine manufacturers. Both coated and uncoated, cooled and uncooled components were measured, with part sizes varying from 2 to 20cm. Spanwise and chordwise 2D roughness profiles were taken on both pressure and suction surfaces. Statistical computations were performed on each trace to determine centerline averaged roughness, rms roughness, and peak to valley height. In addition, skewness and kurtosis were calculated as well as the autocorrelation length and dominant harmonics in each trace. Extensive 3D surface maps made of deposits, pitting, erosion, and coating spallation expose unique features for each roughness type. Significant spatial variations are evidenced and transitions from rough to smooth surface conditions are shown to be remarkably abrupt in some cases. Film cooling sites are shown to be particularly prone to surface degradation.

Publisher

American Society of Mechanical Engineers

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3