Boundary Layer Analysis of a Transonic High-Pressure Turbine Vane Using Ultra-Fast-Response Temperature-Sensitive Paint

Author:

Petersen Anna1,Hilfer Michael2

Affiliation:

1. Institute of Propulsion Technology German Aerospace Center (DLR), , Bunsenstraße 10, 37073 Göttingen , Germany

2. TU Braunschweig, Institute of Fluid Mechanics , Hermann-Blenk-Strasse 37, 38108 Braunschweig , Germany

Abstract

Abstract The focus of this article is the impact of surface roughness on the boundary layer caused by a 7YSZ thermal barrier coating (TBC). Experimental investigations are conducted on a NGV installed inside the wind tunnel for Straight Cascades Göttingen (EGG). The shape of the vane has been altered in a way that eliminates the influence of TBC's thickness. Therefore, it is expected that only the surface roughness is influencing the location of the separation and boundary layer transition. The transition next to the roughness can also be affected by positive and negative pressure gradients, separation, and interacting shocks. The impact of TBC on the turbulent wedges' appearance, separation bubble's position and length, and transition location is examined in this study. This research, combined with prior investigations, provides a comprehensive understanding of a turbine vane's aerothermodynamics. To investigate unsteady flow phenomena on a TBC-coated NGV, ultra-fast-response temperature-sensitive paint (iTSP) is utilized. This dataset will serve as a reference point for developing new turbine vane designs that include TBC and extensive cooling. Furthermore, the findings will be employed as a benchmark for improving numerical models.

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3