Fluid Dynamics of Axial Turbomachinery: Blade- and Stage-Level Simulations and Models

Author:

Sandberg Richard D.1,Michelassi Vittorio2

Affiliation:

1. Department of Mechanical Engineering, University of Melbourne, Parkville, Australia;

2. Turbomachinery & Process Solutions, Baker Hughes, Florence, Italy

Abstract

The current generation of axial turbomachines is the culmination of decades of experience, and detailed understanding of the underlying flow physics has been a key factor for achieving high efficiency and reliability. Driven by advances in numerical methods and relentless growth in computing power, computational fluid dynamics has increasingly provided insights into the rich fluid dynamics involved and how it relates to loss generation. This article presents some of the complex flow phenomena occurring in bladed components of gas turbines and illustrates how simulations have contributed to their understanding and the challenges they pose for modeling. The interaction of key aerodynamic features with deterministic unsteadiness, caused by multiple blade rows, and stochastic unsteadiness, i.e., turbulence, is discussed. High-fidelity simulations of increasingly realistic configurations and models improved with help of machine learning promise to further grow turbomachinery performance and reliability and, thus, help fluid mechanics research have a greater industrial impact.

Publisher

Annual Reviews

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3