Characteristics of Deterministic and Stochastic Unsteadiness of Trailing Edge Cutback Film Cooling Flows

Author:

He Xiao1,Montomoli Francesco1,Michelassi Vittorio2,Panizza Andrea2,Pulga Leonardo2

Affiliation:

1. Imperial College London UQ Lab, Department of Aeronautics, , London SW7 2AZ , UK

2. Baker Hughes Nuovo Pignone Tecnologie, , Florence 50127 , Italy

Abstract

Abstract Trailing edge cutback film cooling flows are ubiquitous in small and medium gas turbines, but they are difficult to predict accurately due to the inherent deterministic and stochastic unsteadiness that controls the effectiveness of the cooling system. To help develop accurate closure models for such flows, the characteristics of both types of unsteadiness and their effects on the mean flows are analyzed in this research. Zonal detached eddy simulation (ZDES) is performed on a trailing edge cutback flow model, and the numerical results are validated against the measured data. Then, by using spectral proper orthogonal decomposition (SPOD) reconstruction, the original dataset is segregated into deterministic and stochastic unsteadiness. The characteristics of the stress tensor and the heat flux of each type of unsteadiness are analyzed in detail, and notable differences between the two unsteadiness are identified in terms of the stress tensor anisotropy and distribution of unsteady kinetic energy and heat flux. By propagating the unsteadiness through the Reynolds-averaged Navier–Stokes (RANS) equations, the effect of different unsteadiness on the mean flow prediction is quantified. An accurate prediction of the total stress tensor reduces the prediction error in the velocity field by 79% and cooling effectiveness by 55%. An accurate prediction of the total heat flux vector reduces the prediction error in cooling effectiveness further by 37%. These findings provide valuable knowledge for the physical understanding, turbulence modeling, and aerothermal design of cutback trailing edge flows.

Funder

Baker Hughes

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3