Experimental Study of Impact of In-Service Deterioration on Aerodynamic Performance of High-Pressure Nozzle Guide Vanes

Author:

Michaud Mathias1,Jackson Dougal2,Goenaga Frédéric2,Povey Thomas1

Affiliation:

1. University of Oxford Department of Engineering Science, , Parks Road, Oxford OX1 3PJ , UK

2. Rolls-Royce plc , WH88, P. O. Box 3, Filton BS34 7QE , UK

Abstract

AbstractIn this paper we experimentally evaluate the impact of in-service deterioration on the aerodynamic performance of heavily film-cooled high-pressure nozzle guide vanes from large civil jet engines. We study 15 mid-life to end-of-life parts removed from operational engines, and compare their performance to those of new parts. Deterioration features included: increased surface roughness; thermal barrier coating spallation; damaged film cooling holes; and trailing edge burn-back. We characterize and present statistics for the surface roughness. Aerodynamic measurements were performed in the high technology readiness level Engine Component AeroThermal (ECAT) facility at the University of Oxford, at engine-representative conditions of exit Mach number, exit Reynolds number, coolant-to-mainstream pressure ratio, and turbulence intensity. We present detailed experimental measurements of the coolant capacity characteristics, downstream loss, and downstream flow structures. The results show that service time has the following effects on high-pressure nozzle guide vanes: increased equivalent sandgrain roughness of (up by 1056% change); reduced coolant flow capacity (maximum change of −6.27% for film cooling holes and −24.7% for the trailing edge slot); increased overall mixed-out kinetic energy loss coefficient by (up to 33% change); leads to greater downstream flow angle variation (change of −6 deg). This is one of the first significant studies of its type in the open literature, and is an important step towards whole-life engine performance assessment.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3