Aerodynamic and Thermal Field Development of Cooled Transonic HP NGV

Author:

Amend Jonas1,Lubbock Roderick1,Ornano Francesco1,Chowdhury Nafiz1,Povey Thomas1

Affiliation:

1. University of Oxford Department of Engineering Science, , Parks Road, Oxford OX1 3PJ , UK

Abstract

Abstract In this study we present detailed aerodynamic and thermal field measurements downstream of an annular cascade of fully-cooled nozzle guide vanes (NGVs). The experiments were conducted in the Engine Component Aerothermal (ECAT) facility at the University of Oxford, at engine-matched conditions of Reynolds number and Mach number, and high turbulence intensity. The experimental data are unusually high-fidelity and allow for detailed comparison with modern computational fluids dynamics (CFD) methods. We compare the experimental data to simulations of fully-featured geometry (resolved internal geometry and film cooling holes). We analyze distributions of whirl angle, kinetic energy loss, and non-dimensional temperature at three axial planes downstream of the NGVs. The aerodynamic and thermal wakes are also characterized in terms of their spreading and decay rates. The analysis is deepened with detailed comparison to a previous data-set for a different design of heavily-cooled NGV. The analysis is a useful reference point for assessing the accuracy of the current state-of-the-art numerical methods used in the engine design process.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3