Performance, Combustion, and Emission Evaluation of Ethanol-Gasoline Blends Ignited by Diesel in Dual-Fuel Intelligent Charge Compression Ignition (ICCI) Engine

Author:

Zhang Yaoyuan1,Zhao Wenbin1,Wu Haoqing1,He Zhuoyao1,Qian Yong1,Lu Xingcai1

Affiliation:

1. Key Laboratory for Power Machinery and Engineering, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract

Abstract A recent proposed dual-fuel combustion mode, intelligent charge compression ignition (ICCI), realizes the high-efficiency and clean combustion by organizing continuous stratification in a wide range of engine load. The paper investigated the performance of alcohol blended gasoline as low-reactivity fuel (LRF) in ICCI combustion mode. Pure ethanol named E100 was also tested as LRF for comparison. To emphasize the differences of LRF properties and exclude the effect of the heat release phasing, the diesel injection timing was adjusted to maintain the same combustion phasing (CA50) at various LRF ratios under medium load. The results showed that E100 and E85 (ethanol ratio in gasoline-ethanol blend) promoted the degree of homogeneous combustion and eradicated soot emissions despite a slight increase of NOx. The maximum indicated thermal efficiency (ITE) was over 51.1% using E85, followed by 50.5% of E50. The perfect substitution ratio at the maximum ITE decreased from more than 80% to about 65% when increasing the ethanol ratio in LRF from 10% to 100%. The unregulated emissions such as aldehydes, ethylene, and methane, produced from incomplete combustion of ethanol were inhabited by E85, while the formation of toluene attributed to the appropriate carbon chain length of gasoline diminished when using E85 and E100.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3