The NOx and N2O Emission Characteristics of an HCCI Engine Operated With n-Heptane

Author:

Li Hailin1,Neill W. Stuart2,Guo Hongsheng2,Chippior Wally2

Affiliation:

1. Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV 26506

2. Institute for Chemical Process and Environmental Technology, National Research Council Canada, Ottawa, ON, Canada

Abstract

This paper presents the oxides of nitrogen (NOx) and nitrous oxide (N2O) emission characteristics of a Cooperative Fuel Research (CFR) engine modified to operate in homogeneous charge compression ignition (HCCI) combustion mode. N-heptane was used as the fuel in this research. Several parameters were varied, including intake air temperature and pressure, air/fuel ratio (AFR), compression ratio (CR), and exhaust gas recirculation (EGR) rate, to alter the HCCI combustion phasing from an overly advanced condition where knocking occurred to an overly retarded condition where incomplete combustion occurred with excessive emissions of unburned hydrocarbons (UHC) and carbon monoxide (CO). NOx emissions below 5 ppm were obtained over a fairly wide range of operating conditions, except when knocking or incomplete combustion occurred. The NOx emissions were relatively constant when the combustion phasing was within the acceptable range. NOx emissions increased substantially when the HCCI combustion phasing was retarded beyond the optimal phasing even though lower combustion temperatures were expected. The increased N2O and UHC emissions observed with retarded combustion phasing may contribute to this unexpected increase in NOx emissions. N2O emissions were generally less than 0.5 ppm; however, they increased substantially with excessively retarded and incomplete combustion. The highest measured N2O emissions were 1.7 ppm, which occurred when the combustion efficiency was approximately 70%.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3