The General Gauss Principle of Least Constraint

Author:

Udwadia Firdaus E.1

Affiliation:

1. University of Southern California Department of Civil and Environmental Engineering;, Department of Aerospace and Mechanical Engineering;, Information and Operations Management;, Olin Hall of Engineering, , Los Angeles, CA 90089

Abstract

Abstract This paper develops a general form of Gauss’s Principle of Least Constraint, which deals with the manner in which Nature appears to orchestrate the motion of constrained mechanical systems. The theory of constrained motion has been at the heart of classical mechanics since the days of Lagrange, and it is used in various areas of science and engineering like analytical dynamics, quantum mechanics, statistical physics, and nonequilibrium thermodynamics. The new principle permits the constraints on any mechanical system to be inconsistent and shows that Nature handles these inconsistent constraints in the least squares sense. This broadening of Gauss’s original principle leads to two forms of the General Gauss Principle obtained in this paper. They explain why the motion that Nature generates is robust with respect to inaccuracies with which constraints are often specified in modeling naturally occurring and engineered systems since their specification in dynamical systems are often only approximate, and many physical systems may not exactly satisfy them at every instant of time. An important byproduct of the new principle is a refinement of the notion of what constitutes a virtual displacement, a foundational concept in all classical mechanics.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3