A nonsmooth dynamics framework for simulating frictionless spatial joints with clearances

Author:

Chaturvedi Ekansh,Sandu Corina,Sandu Adrian

Abstract

AbstractReal-world multibody systems do not have ideal joints; most joints have some clearance. The clearance allows the connected bodies to undergo a misalignment, and the resulting dynamics is governed by the contacts thus formed. Two approaches are typically taken to deal with contacts: the commonly used continuous dynamics approaches assume the Hertzian nature of the contact modeled by nonlinear unilateral spring-damper elements; while the nonsmooth dynamics approach results in a complementarity problem. This paper employs a nonsmooth dynamics approach to develop a coherent framework for the simulation of multibody systems having frictionless joints with clearances. Because clearances are of small magnitude relative to the dimensions of the mechanical components, the nature of the contact in the joints is assumed to be inelastic. Using this assumption and the general nonsmooth dynamics framework, the parametric formulations for cylindrical, prismatic, and revolute joints with clearances are derived. The equations of motion are formulated, and their time-discretized counterparts are cast as a nonlinear programming problem. The proposed scheme also enforces normalization constraint on Euler parameters in contrast to state-of-the-art methods that is conducive to stability of the solution for a suitable range of step sizes. In addition, a variable time-stepping scheme that includes the step size as an extra variable in the optimization is introduced and its stability properties are discussed. The versatility of the proposed framework is demonstrated through numerical experiments.

Publisher

Springer Science and Business Media LLC

Reference85 articles.

1. Hertz, H.R.: Ueber die Beruehrung fester elastischer Koerper. J. fuer die reine und angewandte Mathematik 91, 156–171 (1882). For English translation see Miscellaneous Papers by H. Hertz, edited by D.E. Jones and G.E. Schott (Macmillan, London, 1896)

2. Goldsmith, W.: Impact: The Theory and Physical Behaviour of Colliding Solids. Arnold, Sevenoaks (1960)

3. Hunt, K.H., Crossley, F.R.E.: Coefficient of restitution interpreted as damping in vibroimpact. J. Appl. Mech. 7, 440–445 (1975)

4. Lankarani, H.M., Nikravesh, P.E.: Continuous contact force models for impact analysis in multibody systems. Nonlinear Dyn. 5(2), 193–207 (1994)

5. Lankarani, H.M., Nikravesh, P.E.: A contact force model with hysteresis damping for impact analysis of multibody systems. J. Mech. Des. 112(3), 369–376 (1990)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3