A Separation Modeling Method for Morphing QUAV: Analytical Solutions for Constraint Forces Under Deformation

Author:

Dong Fangfang1,Yuan Baotao11,Zhao Xiaomin2,Chen Ye-Hwa3,Chen Shan1

Affiliation:

1. Hefei University of Technology School of Mechanical Engineering, , Hefei, Anhui 230009 , China

2. Hefei University of Technology School of Automotive and Transportation Engineering, , Hefei, Anhui 230009 , China

3. Georgia Institute of Technology The George W. Woodruff School of Mechanical Engineering, , Atlanta, GA 30332

Abstract

Abstract A morphing quadrotor unmanned aerial vehicle (QUAV) possesses the remarkable ability to alter its shape, enabling it to navigate through gaps smaller than its wingspan. However, these deformations result in changes to the system's center of gravity and moment of inertia, necessitating real-time computation of each state's variations. To address this challenge, we propose a dynamic modeling approach based on the Udwadia−Kalaba (U-K) method. The morphing QUAV is divided into three separate subsystems, with the dynamic modeling for each subsystem conducted independently. Subsequently, the QUAV's deformation states and inherent structure are introduced in the form of constraints, and the constrained forces are derived using the U-K equation. By combining these analytical solutions, the model of the QUAV under continuous deformation is obtained. This approach effectively simplifies the modeling computations caused by changes in the system's center of gravity and moment of inertia during deformation. A control approach is proposed to achieve attitude stabilization and altitude control for the morphing QUAV. Ultimately, the stable motion of the morphing QUAV is validated through numerical simulations.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Anhui Province

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3