Affiliation:
1. Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210 e-mail:
Abstract
Compliant mechanisms achieve motion utilizing deformation of elastic members. However, analysis of compliant mechanisms for large deflections remains a significant challenge. In this paper, a three-spring revolute–prismatic–revolute (RPR) pseudorigid-body (PRB) model for short beams used in soft joints made of elastomer material is presented. These soft joints differ from flexure-based compliant joints in which they demonstrate significant axial elongation effects upon tip loadings. The traditional PRB models based on long thin Euler beams failed to capture this elongation effect. To overcome this difficulty, a model approximation based on the Timoshenko beam theory has been derived. These equations are utilized to calculate the tip deflection for a large range of loading conditions. An optimization process is then carried out to determine the optimal values of the parameters of the PRB model for a large range of tip loads. An example based on a robotic grasper finger is provided to demonstrate how the model can be used in analysis of such a system. This model will provide a simple approach for the analysis of compliant robotic mechanisms.
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献