Design of Under-Actuated Open-Chain Planar Robots for Repetitive Cyclic Motions

Author:

Agrawal Sunil K.1,Sangwan Vivek1

Affiliation:

1. University of Delaware, Newark, DE

Abstract

Under-actuated systems are unavoidable in certain applications. For example, a biped can not have an actuator between the foot and the ground. For industrial robots, underactuation is preferable due to cost considerations. A fully actuated system can execute any joint trajectory. However, if the system is under-actuated, not all joint trajectories are attainable. For such systems, it is difficult to characterize attainable joint trajectories analytically and numerical methods are generally used to characterize them. This paper investigates the property of differential flatness for under-actuated planar open chain robots and study its dependence on inertia distribution within the system. Once this property is established, trajectory between any two points in its differentially flat output space is feasible and can be shown to be consistent with the dynamics of the under-actuated system. It is shown that certain choices of inertia distributions make an under-actuated open-chain planar robot with revolute joints feedback linearizable, i.e., also differentially flat. Hence, both cyclic and point to point trajectories can be guaranteed with these under-actuated systems. The methodology proposed is demonstrated with an under-actuated three degree-of-freedom planar robot.

Publisher

ASMEDC

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3