Two-Stage Control Strategy Based on Motion Planning for Planar Prismatic–Rotational Underactuated Robot

Author:

Li Dawei1,Wei Ziang2,Huang Zixin234

Affiliation:

1. Wuhan Textile University, Wuhan 430200, China

2. School of Electrical and Information Engineering, Wuhan Institute of Technology, Wuhan 430205, China

3. Hubei Key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan 430205, China

4. Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan 430200, China

Abstract

Intelligent robots are often used to explore various areas instead of humans. However, when the driving joint is damaged, the actuated robot degenerates to an underactuated robot, and the traditional control method is not suitable for the underactuated robot. In this work, a two-stage control approach for a planar prismatic–rotational (PR) underactuated robot is introduced. Firstly, we establish the dynamic model and describe the underactuated constraint between an underactuated rotational joint and active prismatic joint. Secondly, the trajectory with multiple parameters is planned to ensure that the two joints reach the target position. Based on underactuated constraints and the evaluation function, the differential evolution algorithm (DEA) is used to optimize these parameters. After that, in stage 1, we design the controller to move the active prismatic joint to the desired position. Meanwhile, the underactuated rotational joint is rotating freely. In stage 2, we design the controller for the active prismatic joint to track the planned trajectory. By means of this strategy, both joints reach their target locations simultaneously. The final simulation result demonstrates that this strategy is effective.

Funder

Hubei Province Nature Science Foundation

Hubei Key Laboratory of Digital Textile Equipment

Hubei Key Laboratory of Intelligent Robot

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3