Evaluation of Grad's Second Problem Using Different Higher Order Continuum Theories

Author:

Jadhav Ravi Sudam1,Agrawal Amit1

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology, Bombay, Mumbai 400076, India

Abstract

Abstract In our earlier work (Jadhav, and Agrawal, 2020, “Grad's second problem and its solution within the framework of Burnett hydrodynamics,” ASME J. Heat Transfer, 142(10), p. 102105), we proposed Grad's second problem (examination of steady-state solution for a gas at rest upon application of a one-dimensional heat flux) as a potential benchmark problem for testing the accuracy of different higher order continuum theories and solved the problem within the framework of Burnett hydrodynamics. In this work, we solve this problem within the moment framework and also examine two variants, Bhatnagar–Gross–Krook (BGK)–Burnett and regularized 13 moment equations, for this problem. It is observed that only the conventional form of Burnett equations which are derived retaining the full nonlinear collision integral are able to capture nonuniform pressure profile observed in case of hard-sphere molecules. On the other hand, BGK–Burnett equations derived using BGK-kinetic model predict uniform pressure profile in both the cases. It seems that the variants based on BGK-kinetic model do not distinguish between hard-sphere and Maxwell molecules at least for the problem considered. With respect to moment equations, Grad 13 and regularized 13 moment equations predict consistent results for Maxwell molecules. However, for hard-sphere molecules, since the exact closed form of moment equations is not known, it is difficult to comment upon the results of moment equations for hard-sphere molecules. The present results for this relatively simple problem provide valuable insights into the nature of the equations and important remarks are made in this context.

Funder

Department of Atomic Energy, Government of India

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference30 articles.

1. The Distribution of Molecular Velocities and the Mean Motion in a Non-Uniform Gas;Proc. London Math. Soc.,1936

2. On the Kinetic Theory of Rarefied Gases;Commun. Pure Appl. Math.,1949

3. Instabilities in the Chapman-Enskog Expansion and Hyperbolic Burnett Equations;J. Stat. Phys.,2006

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3