Third-order accurate 13-moment equations for non-continuum transport phenomenon

Author:

Yadav Upendra1ORCID,Jonnalagadda Anirudh2ORCID,Agrawal Amit1ORCID

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology Bombay 1 , Powai 400076, India

2. Department of Computational and Data Sciences, Indian Institute of Science 2 , Bengaluru, India

Abstract

The derivation of analytical equations of non-continuum macroscopic transport phenomena is underpinned by approximate descriptions of the particle distribution function and is required due to the inability of the Navier–Stokes equations to describe flows at high Knudsen number (Kn ∼ 1). In this paper, we present a compact representation of the second-order correction to the Maxwellian distribution function and 13-moment transport equations that contain fewer terms compared to available moment-based representations. The intrinsic inviscid and isentropic assumptions of the second-order accurate distribution function are then relaxed to present a third-order accurate representation of the distribution function, using which corresponding third-order accurate moment transport equations are derived. Validation studies performed for Grad’s second problem and the force-driven plane Poiseuille flow problem at non-zero Knudsen numbers for Maxwell molecules highlight an improvement over results obtained by using the Navier–Stokes equations and Grad’s 13-moment (G13) equations. To establish the ability of the proposed equations to accurately capture the bulk behavior of the fluid, the results of Grad’s second problem have been validated against the analytical solution of the Boltzmann equation. For the planar Poiseuille flow problem, validations against the direct simulation Monte Carlo method data reveal that, in contrast to G13 equations, the proposed equations are capable of accurately capturing the Knudsen boundary layer.

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3