Improved theory for shock waves using the OBurnett equations

Author:

Jadhav Ravi SudamORCID,Gavasane Abhimanyu,Agrawal AmitORCID

Abstract

The main goal of the present study is to thoroughly test the recently derived OBurnett equations for the normal shock wave flow problem for a wide range of Mach number ( $3 \leq Ma \leq 9$ ). A dilute gas system composed of hard-sphere molecules is considered and the numerical results of the OBurnett equations are validated against in-house results from the direct simulation Monte Carlo method. The primary focus is to study the orbital structures in the phase space (velocity–temperature plane) and the variation of hydrodynamic fields across the shock. From the orbital structures, we observe that the heteroclinic trajectory exists for the OBurnett equations for all the Mach numbers considered, unlike the conventional Burnett equations. The thermodynamic consistency of the equations is also established by showing positive entropy generation across the shock. Further, the equations give smooth shock structures at all Mach numbers and significantly improve upon the results of the Navier–Stokes equations. With no tweaking of the equations in any way, the present work makes two important contributions by putting forward an improved theory of shock waves and establishing the validity of the OBurnett equations for solving complex flow problems.

Funder

Department of Atomic Energy, Government of India

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference65 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3