A Novel Method to Achieve Fast Multi-Objective Optimization of Hydrostatic Porous Journal Bearings Used in Hydraulic Turbomachine

Author:

Gu Yandong1,Wang Dongcheng1,Cheng Li1,Schimpf Artur2,Böhle Martin2

Affiliation:

1. College of Hydraulic Science and Engineering, Yangzhou University , Yangzhou 225009, China

2. Chair for Fluid Mechanics and Fluid Machinery, Technical University of Kaiserslautern , Kaiserslautern 67663, Germany

Abstract

AbstractThe hydrostatic journal bearing equipped with a carbon-fiber-reinforced carbon-based porous bushing is employed in the hydraulic turbomachine. The bearing exhibits high load capacity, but may unduly consume pressurized lubricant. This study aims to maximize the load capacity and minimize the feeding power. The journal radius, nominal clearance, porous bushing length, porous bushing thickness, feeding pressure, and material permeability are selected to optimize. A fast optimization method is proposed, integrating an in-house porous journal bearing solver (PBS), sampling method, surrogate model, and genetic algorithm. Behind PBS, a theoretical flow model based on the Reynolds lubrication equation and the Darcy equation is established, and a new numerical method based on the finite difference method is proposed. PBS substitutes ansysfluent by calculating bearing performances accurately and instantly, which is the first novelty to facilitate optimization. Then, artificial neural networks are trained as error-free and time-efficient surrogate models to produce bearing objectives in the evolution, which is the second acceleration highlight. The running time is reduced significantly. The load capacity is improved by 68.1%, whereas the feeding power declines by 50.5%. In the optimized case, a sharp pressure hump leads to greater load capacity, while the radial velocity decreases, resulting in reduced feeding power.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3