Affiliation:
1. Faculty of Engineering, Universidad Autonoma de Queretaro, Cerro de las Campanas S/N, Queretaro 76010, Mexico
2. ETU i+D–Especialistas en Turbopartes Investigacion y Desarrollo, Cuauhtemoc 3 Ind., San Pedrito Penuelas, Queretaro 76148, Mexico
Abstract
The performance of the porous gas bearing depends on the geometric characteristics, material, fluid properties, and the properties of the porous media, which is a restrictor that controls the gas flow. Its application in industrial environments must support higher loads, higher supply pressure, and, consequently, higher pressure in the lubricant fluid film. Because porous media has a relatively low elastic modulus, it is necessary to consider its deformation when designing porous gas bearings. The design of porous gas bearings is a multi-objective problem in engineering because the optimization objectives commonly are to maximize the load capacity or static stiffness coefficient and minimize the airflow; these objectives conflict. This work presents a multi-objective optimization algorithm based on the nature-inspired Flower Pollination Algorithm enhanced with Non-Dominated Sorting Genetic Algorithm II. The algorithm is applied to optimize the design of a porous gas bearing, maximizing the resultant force and the static stiffness coefficient and minimizing the airflow. The results indicate a better performance of the Multi-Objective Flower Pollination Algorithm than the Multi-Objective Cuckoo Search. The results show a relatively short running time of 6 min for iterations and a low number of iterations of 50.