Experimental Investigation of Aerostatic Journal Bearings Made of Carbon Fiber-Reinforced Carbon Composites

Author:

Schimpf Artur1,Ortelt Markus2,Seiler Helge2,Gu Yandong3,Schwarzwälder Alexander4,Böhle Martin4

Affiliation:

1. Institute of Fluid Mechanics and Fluid Machinery, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany

2. Institute of Structures and Design BT, German Aerospace Center, Stuttgart 70569, Germany

3. College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225009, China

4. Institute of Fluid Mechanics and Fluid Machinery, Technical University of Kaiserslautern, Kaiserslautern 67663, Germany

Abstract

Abstract This study describes experimental results using carbon fiber-reinforced carbon (C/C) material for porous journal bearings under static conditions. Exerted radial forces of up to 90 N, a supply pressure of up to 6 bar, and a maximum rotational speed of 8000 rpm were tested. The occurrence of pneumatic hammering was not observed under these operating points. Triangulation sensors were mounted vertically and horizontally as well as in front of and behind the tested bearing. These sensors measure the eccentricity and misalignment. The orbit analysis demonstrated an improvement in concentricity with an increment in the supply pressure. The layered structure of the C/C material used for the porous liner is presented. A rotational speed below 8000 rpm negligibly influenced the load-carrying capacity and the flowrate. The vertical misalignment of the shaft was determined in relation to the force-applied test bearing. In addition, two vertically positioned sensors on the support-bearing housing were used to discern the misalignment in the absolute system. On the other hand, reducing the speed to 1000 rpm increased the concentricity error. The shaft showed no significant signs of use after the experiments. The measurements confirm the suitability of the material for porous bearings.

Funder

Bundesministerium für Wirtschaft und Energie

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3