Validation of Heat-Flux Predictions on the Outer Air Seal of a Transonic Turbine Blade

Author:

Clark John P.1,Polanka Marc D.1,Meininger Matthew1,Praisner Thomas J.2

Affiliation:

1. Air Force Research Laboratory, Turbine Branch, Wright Patterson AFB, OH 45433

2. United Technologies, Pratt & Whitney, East Hartford, CT 06108

Abstract

It is desirable to accurately predict the heat load on turbine hot section components within the design cycle of the engine. Thus, a set of predictions of the heat flux on the blade outer air seal of a transonic turbine is here validated with time-resolved measurements obtained in a single-stage high-pressure turbine rig. Surface pressure measurements were also obtained along the blade outer air seal, and these are also compared to three-dimensional, Reynolds-averaged Navier-Stokes predictions. A region of very high heat flux was predicted as the pressure side of the blade passed a fixed location on the blade outer air seal, but this was not measured in the experiment. The region of high heat flux was associated both with very high harmonics of the blade-passing event and a discrepancy between predicted and measured time-mean heat-flux levels. Further analysis of the predicted heat flux in light of the experimental technique employed in the test revealed that the elevated heat flux associated with passage of the pressure side might be physical. Improvements in the experimental technique are suggested for future efforts.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3