Convective Heat Transfer and Aerodynamics in Axial Flow Turbines

Author:

Dunn Michael G.1

Affiliation:

1. The Ohio State University, Columbus, OH

Abstract

The primary focus of this paper is convective heat transfer in axial flow turbines. Research activity involving heat transfer generally separates into two related areas: predictions and measurements. The problems associated with predicting heat transfer are coupled with turbine aerodynamics because proper prediction of vane and blade surface-pressure distribution is essential for predicting the corresponding heat-transfer distribution. The experimental community has advanced to the point where time-averaged and time-resolved 3-D heat-transfer data for the vanes and blades are obtained routinely by those operating full-stage rotating turbines. However, there are relatively few CFD codes capable of generating 3-D predictions of the heat-transfer distribution, and where these codes have been applied the results suggest that additional work is required. This paper outlines the progression of work done by the heat transfer community over the last several decades as both the measurements and the predictions have improved to current levels. To properly frame the problem, the paper reviews the influence of turbine aerodynamics on heat transfer predictions. This includes a discussion of time-resolved surface-pressure measurements with predictions and the data involved in forcing function measurements. The ability of existing 2-D and 3-D Navier Stokes codes to predict the proper trends of the time-averaged and unsteady pressure field for full-stage rotating turbines is demonstrated. Most of the codes do a reasonably good job of predicting the surface-pressure data at vane and blade midspan, but not as well near the hub or the tip region for the blade. In addition, the ability of the codes to predict surface-pressure distribution is significantly better than the corresponding heat-transfer distributions. Heat-transfer codes are validated against measurements of one type or another. Sometimes the measurements are performed using full rotating rigs, and other times a much more simple geometry is used. In either case, it is important to review the measurement techniques currently used. Heat-transfer predictions for engine turbines are very difficult because the boundary conditions are not well known. The conditions at the exit of the combustor are generally not well known and a section of this paper discusses that problem. The majority of the discussion is devoted to external heat transfer with and without cooling, turbulence effects, and internal cooling. As the design community increases the thrust to weight ratio and the turbine inlet temperature, there remain many turbine-related heat transfer issues. Included are film cooling modeling, definition of combustor exit conditions, understanding of blade tip distress, definition of hot streak migration, component fatigue, loss mechanisms in the low turbine, and many others. Several suggestions are given herein for research and development areas for which there is potentially high payoff to the industry with relatively small risk.

Publisher

American Society of Mechanical Engineers

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3